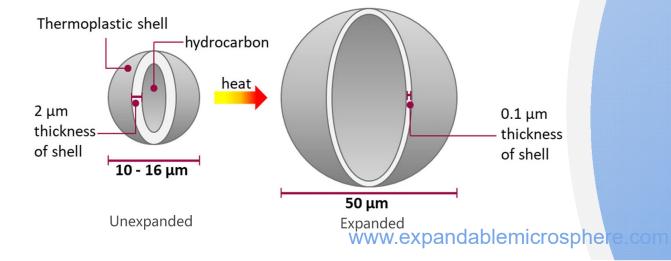
Microesferas Expansíveis em Explosivos

Guia Técnico


assuntos

- Introdução de microesferas expansíveis
- Microesferas Expansíveis em Explosivos
- Benefícios em Explosivos
- Graus de microesferas para escolher
- · Processamento de mistura
- Comparação com esferas de vidro

Introdução de microesferas expansíveis

- Duas formas de produtos: Não Expandido e Expandido.
- Densidade extremamente baixa, 20kg/m3;
- Pó branco de fluxo livre, esferas ocas;
- Invólucro de polímero termoplástico e gás hidrocarboneto em seu interior;

Introdução de microesferas expansíveis

Compressibilidade

- As microesferas expandidas apresentam formato esférico quando estão sob pressão atmosférica.
- microesferas expandidas serão comprimidas sob alta pressão, por exemplo 5 bar.
- microesferas expandidas retornarão à forma esférica original quando a pressão for liberada.
- A resiliência impedirá que as microesferas se quebrem durante o enchimento de cartuchos explosivos.

Introdução de microesferas expansíveis

Estrutura de Célula Fechada

As microesferas expansíveis possuem estrutura celular fechada uniforme e controlada.

Densidade extremamente baixa

Para obter a mesma redução de densidade, as microesferas expandidas consumirão muito menos dosagem em comparação com as esferas de vidro, economizando muito no custo total.

Diferentes Explosivos Civis

Principalmente 4 tipos de explosivos civis:

- Emulsões
- · Dinamites de nitroglicerina
- Agentes de jateamento a seco (principalmente ANFO)
- · Géis de pasta à base de água

As microesferas expansíveis são usadas principalmente em explosivos de emulsão, mas também em esferas e cartuchos ANFO, que são aplicados como sensibilizadores devido à sua estrutura estável de células fechadas e invólucro plástico térmico.

Benefícios da aplicação de microesferas em explosivos de emulsão

A velocidade de detonação aumentará quando microesferas forem adicionadas, o que é muito importante em algumas aplicações de detonação.

Densidade mais baixa

A dosagem de 0,5% de microesferas expandidas diminuirá a densidade da emulsão explosiva de 1400kg/m3 para 1150kg/m3, o que é muito importante para obter o melhor desempenho das propriedades dos explosivos, 5 a 10 vezes menor que a adição de microesferas de vidro.

Estabilidade de armazenamento

As microesferas expandidas podem suportar 95 °C por mais de 3 horas na mistura de emulsões explosivas. Nenhum problema foi encontrado.

Melhorar a compressibilidade

As microesferas expandidas poderiam suportar o processamento de alta pressão na emulsão explosiva, sem qualquer quebra.

Aumentar a combustão

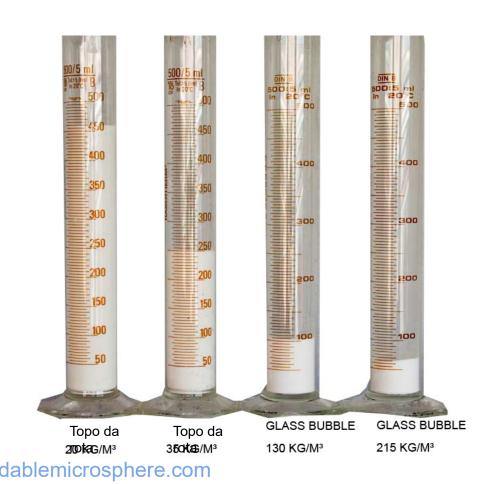
As microesferas expandidas podem melhorar a combustão de explosivos de emulsão por se tratar de um material orgânico e como combustível durante a detonação.

Graus de microesferas expandidas para escolher

Recomendamos classes expandidas a seco para aplicação em explosão:

Nota	Tamanho Médio de Partícula (µm)	Temperatura de amolecimento (°C)	Densidade kg/m3
WP20D	20-30	110±5	30-40
WP40D	30-50	100±5	20-30
WP80D	70-90	120±5	15-25
WP100D	90-110	85±5	13-18

A operação de mixagem


- Dosagem: 0,4-0,6% de microesferas expandidas;
- Dosagem de microesferas expandidas diretamente no equipamento de mistura de matriz de emulsão;
- Equipamentos comuns com maior velocidade de mistura podem ser utilizados na mistura da matriz da emulsão para obter uma dispersão mais rápida e adequada, uma vez que as microesferas expandidas possuem boa compressibilidade, sem que nenhuma esfera seja destruída. Mas as esferas de vidro terão uma alta proporção destruída durante a etapa de mistura.

Comparação com esferas de vidro

- Densidade/Volume: As microesferas expandidas possuem volume 5 a 10 vezes maior que as esferas de vidro;
- Compressibilidade: As microesferas expandidas têm boa compressibilidade e podem suportar altas forças de cisalhamento sem qualquer quebra das esferas. As esferas de vidro têm casca rígida e precisam ser dispersadas em agitação lenta, ou as esferas quebrarão facilmente e perderão o volume.
- Economia de custos: as microesferas
 expandidas têm baixo custo no produto
 final que as esferas de vidro para
 obter a mesma redução de densidade.

 Topo da Topo d
 3504æ/M³ 3504æ/M³
 obter a mesma redução de densidade.

Obrigado!

Se você quiser saber mais, entre em contato conosco.

